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SUMMARY

It is discussed in this paper how the pressure gradient error in general vertical co-ordinate models (in which the
s-transformation is a special case) can be reduced by means of hybrid models. For a better understanding, the
derivation of such a general vertical co-ordinate model from the Cartesian co-ordinate model is given. Two types
of hybridization between s- and z-co-ordinate models, each using one parameter specifying the degree of
hydridization, are presented: (i) the mixed layer transformation with a constant number of layers which are
re®ned near the surface and (ii) the z=s-transformation which introduces steps near the bottom. In order to
achieve good results with the models using other than s-co-ordinates, a pro®le-conserving momentum advection
discretization is developed. The different co-ordinate transformations are tested with 2D barotropic and
baroclinic ¯ows over a topographic bump. Those models with nearly horizontal co-ordinate surfaces in the
strati®ed area give the best correspondence with an isopycnal reference solution. # 1997 John Wiley & Sons,
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1. INTRODUCTION

In recent years an intensive and often controversial discussion has arisen about the so-called pressure

gradient problem in hydrostatic geophysical models with terrain-following vertical co-ordinates.

Haney1 brought the discussion from the meteorological into the oceanographic community.

Expressed in terms of general vertical co-ordinates, the internal, buoyancy-driven horizontal pressure

gradient term consists of two parts, the buoyancy gradient along the co-ordinate surfaces and the

vertical buoyancy gradient multiplied by the co-ordinate slope. These two terms analytically cancel

out when the buoyancy distribution is horizontally homogeneous. In the discrete space this is

CCC 0271±2091/97/091003±21 $17.50 Received July 1996

# 1997 John Wiley & Sons, Ltd.

* Correspondence to: H. Burchard, Joint Research Centre, Space Applications Institute, TP 690, I-21020 Ispra (VA), Italy.

Contract grant sponsor: Danish Research Foundation.



generally not the case and leads to truncation errors. A simple local criterion for the reliability of the

internal pressure gradient calculation is the so-called `hydrostatic consistency condition'.1 A grid is

locally hydrostatically inconsistent if the co-ordinate slope exceeds the ratio of vertical to horizontal

discretization. Assuming that the vertical buoyancy distribution can be described by a polynomial,

Beckmann and Haidvogel2 showed in an extensive analysis that the pressure gradient error depends

on the co-ordinate slope, the slope of the isopycnals and the polynomial degree of the vertical

buoyancy distribution.

There are basically two possible approaches for improving the pressure gradient calculation in

general vertical co-ordinates: developing new discretization techniques for the internal pressure

gradient or providing vertical co-ordinate transformations with certain advantages.

The ®rst is certainly limited by the ®ndings of Beckmann and Haidvogel2 mentioned above.

However, different approaches have been presented. McCalpin3 got improved results by

implementing a fourth-order rather than a second-order discretization of the horizontal, along co-

ordinate gradients, while using a spectral approach in the vertical. Some papers suggest calculating

the pressure gradient term in z-co-ordinates. This leads to the vertical interpolation of buoyancy

values in order to compute the horizontal gradients. Beckmann and Haidvogel2 mention problems

connected with the necessary extrapolations at the bottom when the topography is steep. Stelling and

van Kester4 suggested a non-linear interpolation. They use the same computational stencils for the

discretization of the internal pressure gradient and the horizontal diffusion of concentrations. By

doing this, they construct a discrete diffusion operator which is monotone, a property which is

dif®cult to obtain in generalized vertical co-ordinates. Test calculations show on the other hand that

pressure gradient forces are generally underpredicted with this method,5 leading to errors of the order

of the s-co-ordinate error.

There are two co-ordinate transformations which avoid the pressure gradient problem, because

then one of the two balancing terms vanishes. The along co-ordinate gradient term vanishes, when the

isopycnal transformation is carried out, where the surfaces of constant velocity are identical with the

co-ordinate surfaces. This transformation is only de®ned at vertical lines where the strati®cation is

stable and therefore does not apply to typical mixing or convection situations. This is why most of the

isopychal models are coupled with a mixed layer model for the upper ocean (see e.g. Reference 6).

The second part of the pressure gradient term vanishes if the co-ordinate surfaces are horizontal.

This is the case for z-co-ordinate models (see e.g. References 7 and 8). The problems of these models

are mainly connected with the ¯ow along a sloping bottom and the surface (for small-scale

applications including tides, see References 9 and 10.

Apart from the pressure gradient problem, terrain-following co-ordinates, for which the linear s-

transformation is the best known, have some signi®cant advantages compared with z-co-ordinates.

These are mainly the easy treatment of the kinematic boundary conditions at the bottom and surface

and the high resolution in the shallower part of the domain.

Hybridizing between s-co-ordinates and either z- or isopycnal co-ordinates would allow for

optimizing the model performance by combining the advantages of the different co-ordinate systems.

In order to achieve that, Deleersnijder and Ruddick11 presented a formulation for marine models with

an arbitrary vertical co-ordinate transformation. Implementing this general type of co-ordinate in a

numerical model allows in principle for arbitrary layer distributions in each time step.

Different approaches for hydridization techniques have been suggested in the past. An

interpolation between s- and isopycnal co-ordinates could be achieved by introducing arbitrary

Lagrangian±Eulerian (ALE) co-ordinates12 in the vertical. With this approach, vertical co-ordinates

are in principle treated in a Lagrangian way, i.e. moved with the vertical ¯ow, and afterwards rezoned

to a layer distribution which is advantageous for the speci®c application. This is promising but

dif®cult, because the grid depends on the internal structure of the ¯ow. The task is to ®nd general
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rules for rezoning the co-ordinate surfaces if the strati®cation is weak or unstable or if mixing

processes take place. A model which in principle has adopted this approach is the layered ocean

model of Jensen.13

More work has been done on the hybridization between s- and z-co-ordinates. Beckers14

introduced one ®xed z-level into his model and distributed s-layers between bottom and z-level and

between z-level and surface respectively. By means of this a zero co-ordinate slope (for zero surface

slope) in the strati®ed region above the z-level is achieved. A more general approach was chosen by

Gerdes.15 Assuming a given z-level distribution, a hybridization technique is presented where the co-

ordinates coincide with the z-level at maximum water depth and with s-layers at minimum water

depth. By means of this, co-ordinate surfaces with small slopes are concentrated in the strati®ed

region near the surface.

The scope of this paper is to show how co-ordinate transformations hybridizing between s- and z-

c-ordinates can considerably improve baroclinic ¯ow simulations on coastal and estuarine scales

compared with pure s-co-ordinate models. After presenting the mathematical model in Cartesian co-

ordinates (Section 2) and deriving the transformed equations from it (Section 3), the layer integration

is performed as a ®rst step of discretization (Section 4).

Special numerical problems of general vertical co-ordinates are discussed in Section 5. It is shown

in Section 5.1 that the momentum-conserving discretization of the horizontal advection (the

advection along constant co-ordinate surfaces will simply be referred to as `horizontal advection' in

this paper) introduces arti®cial shear for all co-ordinate transformations except the s-transformation.

This is especially true for z-co-ordinates. A `pro®le-conserving' momentum advection discretization

including the discrete continuity equation will be presented. In Section 5.2 the horizontal buoyancy

discretization is discussed. It is shown that the violation of the hydrostatic consistency condition has the

consequence that the pressure gradient calculation is based on extrapolations rather than interpolations

of discrete values. Apart from the advection and pressure gradient discretization, other problems such as

horizontal or isopycnal diffusion or Coriolis acceleration will not be discussed in this paper.

Two different techniques are presented in Section 6, where a single parameter determines the

degree of hybridization. Both include s-co-ordinates and horizontal co-ordinates as special cases. The

®rst approach, which is similar to Gerdes' transformation,15 is based on a constant number of vertical

layers. It may be called the `mixed layer transformation' because of the concentration of co-ordinate

levels near the surface mixed layer. The second transformation introduces a z=s-type co-ordinate with

steps near the bottom and allows the grid to adjust to a moving surface.

The performance of the pro®le-conserving momentum advection and the two transformations will

be tested in Section 7 for coastal applications in 2D barotropic and baroclinic ¯ows over a

topographic bump.

2. HYDROSTATIC MODEL IN CARTESIAN CO-ORDINATES

The co-ordinates that span the Cartesian space will be denoted as �t*; x*; y*; z�; derivatives along

these co-ordinates will be marked by asterisks. Neglecting horizontal diffusion, the ¯ux form of the

momentum equations for modelling geophysical ocean and coastal dynamics reads in these co-

ordinates as

@t*u� @x*�u2� � @y*�uv� � @z*�uw� ÿ @z*�nt@z*u� ÿ f v � ÿ 1

r0

@x*p; �1�

@t*v� @x*�vu� � @y*�v2� � @z*�vw� ÿ @z*�nt@z*v� � fu � ÿ 1

r0

@y*p: �2�
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Here u; v and w are the velocity components with respect to the x-; y- and z-direction respectively, the

vertical co-ordinate z ranges from the bottom ÿH�x; y� to the surface z�t; x; y�; nt is the vertical eddy

viscosity, f is the Coriolis parameter, r is the density, r0 is a constant reference density and p is the

pressure. Assuming the pressure to be hydrostatic, i.e.

@zp� gr � 0; �3�
the pressure gradient in equation (1) can be expressed as

ÿ 1

r0

@x*p � ÿg
r�z�
r0

@x*z�
�z

z

@x*b dz0; �4�

with the buoyancy

b � ÿg
rÿ r0

r0

: �5�

In equation (4) the ®rst term on the right-hand side is called the external and the second the internal

pressure gradient force.

By means of integrating the continuity equation

@x*u� @y*v� @z*w � 0 �6�
under consideration of the kinematic boundary conditions

w � ÿu@x*H ÿ v@y*H; z � ÿH; �7�

w � @t*z� u@x*z� v@y*z; z � z; �8�
the surface elevation equation can be derived as

@t*z � ÿ@x*

�z
ÿH

u dzÿ @y*

�z
ÿH

v dz: �9�

The equation for a concentration, which can e.g. represent temperature or salinity, is given by

@t*c� @x*�uc� � @y*�vc� � @z*�wc� � 0: �10�
Diffusion of concentrations will not be considered in this paper. The coupling between the

concentration equation and the momentum equations is due to an algebraic equation of state:

r � r�c�: �11�

3. HYDROSTATIC MODEL IN GENERAL VERTICAL CO-ORDINATES

A vertical co-ordinate transformation g (see e.g. Reference 11) will be applied which maps the

physical space into a transformed space spanned by the co-ordinates �t; x; y; g� (see Figure 1). Here g
is assumed to be monotone with respect to z, i.e.

g � g�t*; x*; y*; z� , z � z�t; x; y; g�: �12�
Derivatives in the transformed space will be denoted by @t; @x; @y and @g. The values for g at the

bottom and top are constant in time and space so that the approach shown here provides boundary-

®tted co-ordinates in the vertical. Here

g�z� � 0; g�ÿH� � ÿ1 �13�
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are used. The so-called Jacobian of the transformation,

J :� @gz � �@z*g�ÿ1; �14�
plays a central role in the transformation of the equations. It can easily be seen from (13) and (14) that�0

ÿ1

J dg � z� H � D; �15�

where D is the water depth.

Derivatives and integrals of a function f in g-co-ordinates read as

@z*f � 1

J
@g f ; �16�

@x*f � @x f � @x*g@g f ; �17�
@t*f � @t f � @t*g@gf ; �18�

�b

a

f �z� dz �
�g�b�
g�a�

J �g0�f �g0� dg0: �19�

The following relations can be derived from (17) and (18):

@x*g � ÿ@xzJÿ1; @t*g � ÿ@tzJÿ1; �20�

@xJ � ÿ@g�J@x*g�; @tJ � ÿ@g�J@t*g�: �21�
A new de®nition of the vertical velocity simpli®es the transformation of the equations:

~o � dt*g � @t*g� u@x*g� v@y*g� w@z*g , w � J � ~oÿ @t*gÿ u@x*gÿ v@y*g�; �22�
where dt* denotes the substantial derivative in the physical space. Now the continuity equation (6) can

be transformed to the g-co-ordinate with the aid of (20)±(22):

@tJ � @x�Ju� � @y�Jv� � @g�J ~o� � 0: �23�

Figure 1. Sketch of principle of vertical co-ordinate transformation (adapted from Reference 11)
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The momentum equations can now be written as

@t�Ju� � @x�Ju2� � @y�Juv� � @g� ~oJu� ÿ @g
nt

J
@gu

� �
ÿ fJv � ÿJ

@x*p

r0

; �24�

@t�Jv� � @x�Jvu2� � @y�Jv2� � @g� ~oJv� ÿ @g
nt

J
@gv

� �
ÿ fJu � ÿJ

@y*p

r0

; �25�

where the pressure term (4) in the x-direction can be transformed to

ÿJ
@x*p

r0

� ÿgJ
r�z�
r0

@x*z� J

�0

g
J �@xb� @x*g@gb� dg0: �26�

The kinematic boundary conditions (7) and (8) are, under consideration of the transformed vertical

velocity ~o, of simple form and therefore show a major advantage of generalised boundary-®tted

vertical co-ordinates:

~o � 0; g � ÿ1; �27�

~o � 0; g � 0: �28�
The concentration equation (10) reads in the transformed space as

@t�Jc� � @x�Juc� � @y�Jvc� � @g�J ~oc� � 0: �29�
By combining (14), (20), (22) and (23), a conservative formulation for the recalculation of the

physical vertical velocity o can be obtained:11

w � 1

J
�@t�Jz� � @x�Juz� � @y�Jvz� � @g�J ~oz��: �30�

It should be noted that w is not included in the transformed equations and therefore needs only to be

evaluated for postprocessing reasons.

The well-known s-co-ordinates introduced by Phillips16 are the simplest special case of general

vertical co-ordinates. They are based on the linear transformation function

s � zÿ z
D

; �31�

z � sD� z: �32�
This results in J � D for s-co-ordinate models.

Another useful co-ordinate transformation is achieved by demanding that all vertical velocities

vanish, i.e. J ~o � 0. Inserting this into the continuity equation (23) yields, after integrating it

vertically from ÿ1 to g,

@tz � ÿ@x

�g
ÿ1

Ju dg0 ÿ @y

�g
ÿ1

Jv dg0: �33�

This provides isopycnal co-ordinates with r � r�g� if the co-ordinate surfaces are initially isopycnal

and no vertical mixing of density is assumed. This co-ordinate transformation which depends on the

internal ¯ow dynamics is not generally de®ned, because the monotonicity of g � g�z� is not

guaranteed. Furthermore, it is unstable if the vertical density strati®cation is too weak. However,

combining this with other transformations seems to be promising (see Section 7.2).
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4. LAYER INTEGRATION

As preparation for the discretization the transformed space (see Figure 1) is divided into N layers. Let

ÿ1 � g0 � � � � � g ~Nÿ1�x; y� < g ~N �x; y� < � � � < gN � 0 �34�
for each position �x; y� be partitions of the interval [ÿ1, 0] and

Dgk�x; y� � gk�x; y� ÿ gkÿ1�x; y� �35�
for 14 k 4N . In order to include step bottom hybrid models (see Section 6.2) in this theory, the

layer interfaces gk may be functions of the horizontal position �x; y� but not of the time t. Here ~N �x; y�
denotes the lowest layer index with Dgk�x; y� > 0 for a given position �x; y�. In most applications, e.g.

in s-co-ordinate models, ~N � 1 and gk are constant for all positions �x; y�.
The integration of the continuity equation (23) over the kth layer reads, under consideration of the

Leibniz rule �gk

gkÿ1

@x f dg � @x

�gk

gkÿ1

f dgÿ f �gk�@xgk � f �gkÿ1�@xgkÿ1; �36�

as

@t

�gk

gkÿ1

J dg� @x

�gk

gkÿ1

Ju dg� @y

�gk

gkÿ1

Jv dg� �J ~oÿ Ju@xgÿ Jv@yg�g�gk

ÿ �J ~oÿ Ju@xgÿ Jv@yg�g�gkÿ1
� 0: �37�

With the de®nitions

hk :�
�gk

gkÿ1

J dg; �38�

pk :�
�gk

gkÿ1

Ju dg; qk :�
�gk

gkÿ1

Jv dg; �39�

uk :� pk

hk

; vk :� qk

hk

; �40�

ck :�
�gk

gkÿ1

Jc dg; bk :�
�gk

gkÿ1

Jb dg; �41�

�wk :� �J ~oÿ Ju@xgÿ Jv@yg�g�gk
; �42�

equation (37) can be rewritten as

@thk � @xpk � @yqk � wk ÿ �wkÿ1 � 0: �43�
Here we assume that the horizontal velocities are constant over the layer thickness. After this the

layer-integrated momentum equations read as

@tpk � @x�ukpk� � @y�vkpk� � � �wku�k ÿ � �wkÿ1u�kÿ1 ÿ tx
k � tx

kÿ1 � fqk � Px
k; �44�

@tqk � @x�ukqk� � @y�vkqk� � � �wkv�k ÿ � �wkÿ1v�kÿ1 ÿ ty
k � ty

kÿ1 ÿ fpk � P
y
k ; �45�

with the shear stress

tx
k �

nt

J
@gu

� �
k
� �nt@z*u�k �46�
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and the layer-integrated pressure force

Px
k � ÿ

1

r0

�gk

gkÿ1

J@x*p dg: �47�

The de®nitions for P
y
k and ty

k are analogous.

The layer integration of the pressure gradient force can be done in the following way:

Px
k � ÿghk

r�z�
r0

@x*z�
�zk

zkÿ1

�z
z

@x*b dz0 dz00

� ÿghk

r��
r0

@x*z� hk

�z
zk

@x*b dz0 �
�zk

zkÿ1

�z0 ÿ zkÿ1�@x*b dz0

� ÿghk

r�z�
r0

@x*z� hk
1
2

hN �@x*b�N �
PNÿ1

j�k

1
2
�hj � hj�1��@x*b�j

!
; �48�

 
with zk � z�gk� and

�@x*b�k � 1
2
�@xbk�1 � @xbk� ÿ @xzk

bk�1 ÿ bk

1
2
�hk�1 � hk�:

�49�

The main approximation applied here was�zk

zkÿ1

�z0 ÿ zkÿ1�@x*b dz0 � 1
2

h2
k�@x*b�k : �50�

The layer integration was carried out like this in order to achieve the exact value for the pressure

gradient force when isopycnal co-ordinates are used, i.e. when @xbk � 0. Assuming a zero external

pressure gradient and a two-layered ¯ow with

rk � r1 for k > c;
r2 for k 4 c;

�
�51�

with 1 < c < N , where the density interface zc is a co-ordinate surface, the pressure gradient force

would have the form

Px
k � 0 for k > c;

ÿhk@xzcg�r2 ÿ r1�=r0 for k 5 c:

�
�52�

This gives the analytically correct form for the pressure gradient force as the product of the isopycnal

slope and the reduced gravity.

We obtain (again approximating the horizontal advection terms) the following expression for the

density equation:

@t�hkck� � @x�pkck� � @y�qkck� � � �wkc�k ÿ � �wkÿ1c�kÿ1 � 0: �53�
It should be noted here that the governing equations (43)±(45) and (53) no longer contain the

Jacobian J or the layer distribution in the transformed space g. It is only necessary to compute the

layer distribution in the physical space hk . Another method for the derivation of these layer-integrated

equations is to prescribe a time-dependent layer distribution in the physical space and then to

integrate the equations over these layers under consideration of the Leibniz rule (36) (see e.g.

Reference 17).
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5. DISCRETIZATION

For the discretization the domain is horizontally divided into equidistant spatial increments Dx and

Dy; the corresponding horizontal indices are i and j. The constant time step will be denoted by Dt. The

notation for the discrete variables in the resulting staggered C-grid is shown in Figure 2. The local

layer thicknesses at the u-, v- and c-points will be denoted by hu
i; j;k; hv

i; j;k and hc
i; j;k respectively.

Throughout this section, superscripts u, v and c indicate whether a u-velocity point, a v-velocity point

or a concentration point is considered. The general time-stepping procedure will not be discussed

here extensively. The free surface and the vertical diffusion are treated implicitly, all other terms

explicitly. Two of the terms in the momentum equation, i.e. the horizontal momentum advection and

the internal pressure gradient, will be discussed more thoroughly because their discretization may

cause speci®c problems in general co-ordinates. For simplicity this discussion is based on situations

with homogeneity in the y-direction.

5.1. Momentum advection

The discretization of the horizontal momentum advection is problematic in cases where the

numerical grid is distorted, i.e. when a transformation other than the s-transformation is used.

Neglecting friction, diffusion, rotation and the pressure gradient, the 2D advection equation for

momentum (1) reads as

@t*u� @x*u2 � @z�wu� � 0: �54�

Assuming u � u�t; x� is a function of time and horizontal position only, (54) can be rewritten by

means of the continuity equation as

@t*u� 1
2
@x*u2 � 0: �55�

After initializing (54) with the vertically homogeneous u-pro®les, the horizontal velocity will remain

vertically homogeneous.

The discretization of the horizontal momentum advection in general co-ordinates should maintain

this property. Otherwise, numerically induced vertical shear could lead to errors, especially in the

Figure 2. Sketch of vertical grid with indication of indexing: � , concentrations; 6, horizontal velocities; D, vertical velocities
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turbulence modelling. In general co-ordinates the layer-integrated form of the 2D momentum

advection equation reads as (see (44))

@t�hkuk� � @x�hkukuk� � �wu�k ÿ �wu�kÿ1 � 0: �56�
A general, forward-in-time discretization of (56) has the form

ĥu
i;k ûi;k ÿ hu

i;kui;k

Dt
� Ai;k � 1

2
�wi�1;k � wi;k��ui;k ÿ 1

2
�wi�1;kÿ1 � wi;kÿ1��ui;kÿ1 � 0; �57�

where Ai;k denotes the discrete horizontal advection term. With

Ai;k �
�pi�1;k � pi;k�~ui�1;k ÿ �pi;k � piÿ1;k�~ui;k

2Dx
�58�

a momentum-conserving discretization of the horizontal advection can be achieved. In (57) and (58),

~ui;k and �ui;k are discrete velocity values which are taken into account for the horizontal and the

vertical advection respectively. The determination of these advection velocities depends on the

advection method chosen. Using central differencing, ~ui;k � 1
2
�ui;k � ui�1;k� and �ui;k � 1

2
�ui;k � ui;kÿ1�

had to be chosen. A ®rst-order upstream scheme would be achieved (in the case of ~ui;k > 0 and
1
2
�wi;k � wi�1;k� > 0� with ~ui;k � ui;k and �ui;k � ui;k .

The variables marked with a hat, ĥu
i;k and ûi;k , denote values on the new time level. For simplicity

we assume that the water depth Du
i is constant in time so that the local box heights do not vary in

time, i.e. ĥu
i;k � hu

i;k . For the momentum we write pi;k � hu
i;kui;k . If the velocities on the old time level,

ui;k; ~ui;k and �ui;k , are vertically homogeneous, i.e. do not depend on the index k, it can be easily seen

after eliminating the vertical velocities by using the discrete form of the continuity equation (43),

pi;k ÿ piÿ1;k

Dx
� wi;k ÿ wi;kÿ1 � 0; �59�

that the velocities on the new time level, ûi;k , are only vertically homogeneous for local box heights

which can be written as

hu
i;k � akDu

i ; �60�
with ak 5 0 and

PN
k�1 ak � 1 and ak not depending on the horizontal index i. This is only the case in

s-co-ordinates after equidistant or non-equidistant layer integration with constant values gk (see (34)).

With all other co-ordinate transformations a numerically induced shear will be produced by advection

of momentum.

This problem can be avoided if the horizontal advection term is discretized in a different way:

Ai;k � hu
i;kui;k

~ui�1;k ÿ ~ui;k

Dx
� ui;k

pi�1;k ÿ piÿ1;k

2Dx
: �61�

Let ui;k again be vertically homogeneous, i.e. not depending on the index k. Now the second part of

the discrete horizontal advection (61) cancels out with the vertical advection after being eliminated

by means of the discrete continuity equation (59). In order to guarantee this, the same ¯ux terms pi;k

have to be used for the discrete continuity equation and the horizontal advection. Now ûi;k is

independent of the vertical index k for all co-ordinate transformations.

The second part of (61) is a central discretization of a hyperbolic term which may lead to a higher

instability of the scheme. As a compensation for that the ®rst term will, in the numerical test shown

later, be discretized upstream, which leads for hu
iÿ1;k � hu

i;k � hu
i�1;k and the Courant number

C � ui;kDt=Dx � 1
2

to the Lax±Wendroff scheme.

It is obvious that this new method is not momentum-conserving. Instead, a conservation of

homogeneous pro®les is guaranteed by this method. In the test cases considered here, the calculations
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with s-co-ordinates resulted in nearly identical results for both horizontal advection discretizations

(see Section 7.1). However, the performance of the pro®le-conserving method should be proven in

more complex situations.

It should be noted that this method guarantees exact pro®le conservation only if the free surface is

not moving. For cases with signi®cant temporal changes in water depth the exact pro®le conservation

requires a more sophisticated discretization.

5.2. Pressure gradient

The internal part of the pressure gradient (48) will be discretized according to Mellor et al.18 The

crucial part of this term, which is �@x*b�k (in the case of the u-equation), is discretized between two

vertically adjacent velocity points:

�@x*b�k �
1
2
�bi�1;k�1 � bi�1;k� ÿ 1

2
�bi;k�1 � bi;k�

Dx
ÿ @xzk

1
2
�bi�1;k�1 � bi;k�1� ÿ 1

2
�bi�1;k � bi;k�

1
2
�hc

i;k � hc
i�1;k�

: �62�

The discretization (62) can be written as

�@x*b�k �
�1
2
ÿ a�bi�1;k�1 � �12� a�bi�1;k ÿ �12� a�bi;k�1 ÿ �12ÿ a�bi;k

Dx
; �63�

with a � @xzkDx=�hc
i;k � hc

i�1;k�. For jaj4 1
2
, (63) can be interpreted as interpolating vertically

between bi�1;k�1 and bi�1;k on one hand and between bi;k�1 and bi;k on the other hand. For jaj > 1
2
,

extrapolations are made instead. The requirement jaj4 1
2

is commonly called the `hydrostatic

consistency condition' and can be written as

j@xzk j
Dx

1
2
�hc

i;k � hc
i�1;k�

4 1: �64�

The two obvious ways to guarantee that (64) is ful®lled for a given co-ordinate transformation (®xed

@xz) are often unacceptable: thick layers could lead to an insuf®cient vertical resolution in the

strati®ed region; a ®ne horizontal resolution could easily be computationally too expensive. The latter

could, however, be afforded if unstructured grids in the horizontal are used, which are re®ned at

locations with steep bottom slopes.

The problem with the hydrostatic consistency condition does not occur if the co-ordinate surfaces

are horizontal (@xzk � 0� or coincide with isopycnals (surfaces of equal density), i.e. @xbk � 0.

Considering the latter case by assuming the discrete equalities bi�1;k�1 � bi�1;k and bi;k�1 � bi;k , (63)

can be rewritten as

�@x*b�k � ÿ@xzk

bi;k�1 ÿ bi;k
1
2
�hc

i;k � hc
i�1;k�

: �65�

This expression for all slopes @xzk , does not contain extrapolations and therefore does not lead to large

errors.

It should be mentioned here that for the limit of the hydrostatic consistency condition, i.e. for

jaj � 1
2
, the numerator of (63) is simply the difference of two buoyancies. This leads to a relatively

high accuracy for this speci®c situations (see also Reference 18).
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6. HYBRIDIZATION TECHNIQUES

In this section, two hybrid transformations will be presented: the mixed layer transformation with a

smooth bottom and the z=s-type transformation with a step-like bottom. The ®rst has a coarse and the

latter a ®ne vertical resolution at the bottom.

6.1. Mixed layer transformation

This kind of transformation can be achieved by means of locally interpolating between an

equidistant (in shallow water) and a non-equidistant (in deep water) discretization of the s-

transformation. This transformation will be referred to as the mixed layer transformation, because the

co-ordinate surfaces will be concentrated near the surface. By doing this, an upper mixed layer could

be highly resolved. Let b�s� be a non-equidistant discretization with s from (31):

b�s� � tanh�d�1� s��
tanh�d� ÿ 1; �66�

with d > 0 and g�s� the mixed layer transformation

g�s� � as� �1ÿ a�b�s�: �67�

The local interpolation parameter a is calculated in such a way that the surface layer

hN � ÿg�sNÿ1�D, with sNÿ1 � ÿ1=N , always has the constant thickness hN � Dmin=N :

a � min
�Dmin=D�sNÿ1 ÿ b�sNÿ1�

sNÿ1 ÿ b�sNÿ1�
; 1

� �
: �68�

Here Dmin is a prescribed critical water depth. For shallow water with D4Dmin, equidistantly

distributed s-layers will be generated. It can happen that a becomes negative, which does not give

problems in practical applications. The grid generated by the s-transformation, which corresponds to

the mixed layer transformation with the limit of d ! 0 in (66), is shown in Figure 3. The layer

distributions for the mixed layer transformation with d � 0�5 and 5 are shown in Figure 4. This

method is easy to implement because it is based on a ®xed number of vertical grid boxes of non-zero

thickness.

6.2. z=s-type transformation

The main task in introducing a step-like bottom co-ordinate is to determine the lower grid box

indices ~Nu
i; j; ~N v

i; j and ~Nc
i; j (once) and the vertical grid box heights hu

i; j;k; hv
i; j;k and hc

i; j;k (in each time

step) which always have to sum up to the actual water depth.

It is shown here how a hybridization can be achieved which allows for an arbitrary interpolation

between a z-co-ordinate-type and a s-co-ordinate model. We use the name z-co-ordinate-type model

here in order to distinguish this from a z-co-ordinate model where the layers do not move with the

free surface. Therefore such a z-co-ordinate-type model can in principle already be referred to as a

hybrid z=s-type model.

First the z-co-ordinate-type model will be constructed. Let Hmax be the maximum water depth at a

velocity point:

Hmax � max
i; j

�maxfHu
i; j;H v

i; jg�: �69�
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Let Dz be a prescribed vertical increment (which will be the height of a grid box not disturbed by the

bottom for z � 0) and c, with 0 < c4 1, a parameter which determines the minimum and the

maximum grid box height at the bottom:

cDz < hu

i; j; ~Nu
i; j

4 �1� c�Dz; cDz < hv
i; j; ~N v

i; j

4 �1� c�Dz: �70�

Let

N � INT
Hmax

Dz� 1ÿ c

� �
�71�

be the number of vertical layers at the deepest point, where INT is the integer truncation function. We

further de®ne locally vertical increments Dzu
i; j;Dzvi; j and Dzc

i; j which in the case of the z-co-ordinate-

Figure 3. Grid with s-transformation

Figure 4. Two different realizations of mixed layer transformation (67) with Dmin� 10 m (minimum water depth for
undisturbed surface with z� 0): upper panel, d� 0�5; lower panel, d� 5
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type model have (except in the bottom boxes) the value Dx. Now the bottom grid box indices at the

velocity points can be de®ned as

~Nu
i; j � N � 1ÿ INT

Hu
i;k

Dzu
i; j

� 1ÿ c

 !
; �72�

~N u
i; j � N � 1ÿ INT

H v
i;k

Dzvi; j

� 1ÿ c

 !
: �73�

The bottom grid box indices at the elevation points are calculated as

~Nc
i; j � minf ~N u

iÿ1; j; ~Nu
i; j; ~N v

i; jÿ1; ~N v
i; jg: �74�

The grid box heights at the velocity points are ®tted to the actual water depth as

hu
i; j;k �

Dzu
i; j

Du
i; j

Hu
i; j

for ~Nu
i; j � 14 k 4N ;

�Hu
i; j ÿ �N ÿ ~N u

i; j�Dzu
i; j�

Du
i; j

Hu
i; j

for k � ~N u
i; j;

8>>><>>>: �75�

hv
i; j;k �

Dzvi; j

Dv
i; j

H v
i; j

for ~N v
i; j � 14 k 4N ;

�H v
i; j ÿ �N ÿ ~N v

i; j�Dzvi; j�
Dv

i; j

H v
i; j

for k � ~N v
i; j:

8>>><>>>: �76�

With

~Mc
i; j � maxfNu

iÿ1; j;N u
i; j;N v

i; jÿ1;N v
i; jg �77�

the grid box heights at the elevation points can be calculated as

hc
i; j;k �

Dzc
i; j

Dc
i; j

Hc
i; j

for ~Mc
i; j � 14 k 4N ;

�Hc
i; j ÿ �N ÿ ~Mc

i; j�Dzc
i; j�Dc

i; j=H
c
i; j

~Mc
i; j ÿ ~Nc

i; j � 1
for ~Nc

i; j 4 k 4 ~Mc
i; j:

8>>>><>>>>: �78�

This procedure guarantees that the grid box heights at one horizontal point always sum up to the local

water depth.

The hybridization can now be easily applied. Let a be a parameter, 04a4 1. The local vertical

increments will be an interpolation between the z-increments Dz and the s-increments, which are

determined as the local water depth divided by the number of layers, N:

Dzu
i; j � aDz� �1ÿ a�H

u
i; j

N
; �79�

Dzvi; j � aDz� �1ÿ a�H
v
i; j

N
; �80�

Dzc
i; j � aDz� �1ÿ a�H

c
i; j

N
: �81�
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The following models are obtained: for a � 1 the z-co-ordinate-type model (see Figure 5), for a � 0

the s-co-ordinate model (see Figure 3) and for other values between a � 0 and 1 the z=s-type

transformation (see Figure 5).

The boxes with the concentrations ci; j;k with ~N c
i; j 4 k < ~M c

i; j are considered as one box (see Figure

5) and are therefore mixed in a mass-conserving way after each time step. This is computationally

more convenient than a priori treating these boxes as one. At velocity points adjacent to these boxes

the co-ordinate slopes for the pressure gradients (62) are evaluated using one-sided differences.

7. 2D CHANNEL FLOW OVER A TOPOGRAPHIC BUMP

The performance of the different co-ordinate transformations will be tested on 2D barotropic and

baroclinic ¯ows over a topographic bump. For all test cases the same bathymetry will be used (see

Figure 3±5), which was generated by the formula (values given in metres)

H � 20ÿ 10 cos2 xÿ 2000

2000
p

� �
for 10004 x4 3000;

20 else:

8><>: �82�

A large number of vertical layers �N � 40� are used in order to show how the violation of the

hydrostatic consistency condition in¯uences the results for the baroclinic calculations. In the

horizontal, 20 increments with Dx � 200 m were used.

Figure 5. Two different realizations of z=s-type transformation (79)±(81) with c� 0�5 and Dz � 0�5: upper panel, a� 0�25;
lower panel, a� 1
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The parameterization of the bed friction was realized by using

tb � nt@zu � r�~z�ujuj �83�
at the bottom, with the drag coef®cient

r�~z� � k2

ln2�30~z=Ks�
; �84�

the von KaÂrmÂ n constant k � 0�4, the roughness length Ks � 0�1 m and the distance from the bottom

~z � Ks=30� z� H . This formulation for the bed friction is derived from assuming a logarithmic

velocity pro®le near the bottom. It provides values for the bottom drag tb which are less sensitive to

the distance from the bottom compared with values obtained via formulations with a constant drag

coef®cient r. This property is important when grids with strongly varying bottom box heights are used

as in the z=s-type model (see Figure 5). The internal friction has been parametrized by the parabolic

pro®le

nt � k~z 1ÿ ~z

D

� �
jtbj1=2: �85�

7.1. Barotropic ¯ow

This barotropic ¯ow case is mainly set up in order to test the pro®le-conserving momentum

advection discretization discussed in Section 5.1. Here the s-co-ordinate case (Figure 3) is compared

with the z=s-co-ordinate with a � 1 (Figure 5), because the latter provides a signi®cant violation of

relation (60). The tests were run with and without friction. The barotropic forcing was imposed by an

initial linearly sloping surface elevation with a difference of 0�01 m between the lateral ends of the

channel. During the integration the surface elevation was ®xed at the open boundaries. The time step

was Dt � 60 s. The case without friction was integrated over t� 4800 s, the case with friction over

t� 12,000 s.

An inspection of the resulting velocity pro®les (see Figure 6) and the ¯uxes through the open

boundary (see Table I) shows that the momentum-conserving advection discretization causes a strong

acceleration of ¯ow near the up-sloping bottom. In the case without friction the pro®le-conserving

method provides vertically homogeneous pro®les. This leads to a much better correlation between the

s-co-ordinate and z=s-co-ordinate results also in the case with friction. The s-co-ordinate results

differed only insigni®cantly for both discretization methods. A comparison between the s- and the

mixed layer transformation where (60) is also violated showed similar results.

7.2. Two-layered ¯ow

For the tests of the internal pressure gradient discretization a 2D two-layered ¯ow over the

topography given by (82) was set up. The densities were r1 � 1000 kg m73 in the upper layer and

r2 � 1020 kg m73 in the lower layer. Mixing of density was excluded. Here the initial surface

elevation was z � 0, with ®xed values at the open boundaries. The forcing was now imposed by an

initially linearly sloping density interface z0 with a mean position z � ÿ5 m and a slope

@xz
0 � ÿ5� 10ÿ5. The density interface was ®xed at the open boundaries. This test case was

integrated over t� 12 h, when the ¯ow was close to a steady state. The maximum internal Froude

number was Fr � 0�15.

A reference solution for this test case is calculated by using a partially isopycnal transformation.

The density interface is considered as the co-ordinate surface with k � N=2 � 20, whereas the other

1018 H. BURCHARD AND O. PETERSEN

INT. J. NUMER. METH. FLUIDS, VOL. 25: 1003±1023 (1997) # 1997 John Wiley & Sons, Ltd.



co-ordinate surfaces are equidistantly distributed between the bottom and the interface and between

the interface and the surface respectively. This is managed in the discrete space by integrating the

continuity equation vertically from the bottom to the interface and then setting the vertical velocity at

the interface to zero (see (33)).

Figure 6. 2D barotropic open channel ¯owÐvelocity pro®les at x� 1�6 km calculated using s- and s=z co-ordinates with
momentum-conserving and pro®le-conserving discretization of horizontal advection: left, without friction; right, with friction

Table I. Barotropic ¯ow over bump: ¯ux through open boundaries
after t� 4800 s without friction and after t� 12,000 s with friction
for different advection schemes and co-ordinate transformations.
The relative ¯ux error is given as �F ÿ F0�=F0, where F0 is the
¯ux calculated with s-co-ordinates and momentum-conserving
advection. F0 is 3�68 m3 sÿ1 without friction and 6�02 m3 sÿ 1 with

friction

Transformation Advection Friction Flux error

s Mom.-cons. No 0�0000
s Prof.-cons. No ÿ0�0001
s=z; a � 1 Mom.-cons. No 0�1199
s=z; a � 1 Prof.-cons. No ÿ0�0001
s Mom.-cons. Yes 0�0000
s Prof.-cons. Yes 0�0004
s=z; a � 1 Mom.-cons. Yes 0�0655
s=z; a � 1 Prof.-cons. Yes ÿ0�0215
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For running this test case with non-isopycnal co-ordinates, a routine for interpolating a density

interface into a grid and detecting the interface in the grid afterwards has to be found. Here a

conservative interpolation method is used:

ri;k �

r1 for z05 zi;k;

r2 for z04 zi;kÿ1;

z0 ÿ zi;kÿ1

hc
i;k

r1 �
zi;k ÿ z0

hc
i;k

r2 else;

8>>><>>>: �86�

where zi;k are the z-co-ordinates of the layer interfaces positioned a the w-points (see Figure 2). The

time step for these calculations was Dt � 20 s in order to stabilize the isopycnal solution. For the

mass-conserving advection of density the fully two-dimensional uniformly third-order (in space)

polynomial interpolation algorithm (UTOPIA) was implemented.19 In order to have a monotone

scheme, a multidimensional ¯ux correction according to Zalesak20 was applied. This computationally

expensive discretization of the density advection was chosen in order to minimize problems

connected with numerical diffusion and dispersion.

Besides with the s- and isopycnal co-ordinates, this test case was also carried out with the z=s-

transformation �a � 0�25; 0�5; 1� and mixed layer transformation �d � 0�5; 2; 5�. As an integral

measure for comparing the eight methods under consideration, the vertically integrated ¯ux through

the open boundaries was calculated (see Table II).

An inspection of Table II shows that those co-ordinate transformations which provide horizontal

co-ordinate surfaces in the area of the interface (s=z-transformation with a� 1 and the mixed layer

transformation with d � 5). result in ¯uxes close to the ¯ux calculated with the isopycnal co-ordinate.

The more sloping the co-ordinate surface is in the vicinity of the interface, i.e. the larger the

hydrostatic consistency criterion (see left side of relation (64)), the smaller the ¯ux is. This is most

extreme in the case of s-co-ordinates.

Figures 7 and 8 show the interface position and the velocity pro®le at x� 2�4 km for the different

co-ordinate transformations. The interface in the non-isopycnal models was de®ned as the vertical

position with r � 1
2
�r1 � r2�, which was detected by means of (86). The plots of the velocity pro®les

con®rm the results of Table II. Nevertheless, even for the mixed layer transformation with d� 5 and

the z=s-transformation with a� 1 the interface positions behind the bump are higher than in the

Table II. Two-layered ¯ow over bump: ¯ux through open boundaries
after t� 12 h for different co-ordinate transformations. In the last
column the hydrostatic consistency criterion (HCC, see left side of
relation (64)) at x� 2�4 km and z�ÿ5 m is given. The relative ¯ux
error here was calculated as the relative deviation from the isopycnal

solution, where the ¯ux was F0 � 1�52 m3 sÿ1

Co-ordinate transformation Flux error HCC

s-transformation ÿ0�0890 2�14870
Isopycnal transformation 0�0000 Ð
s=z-transformation, a� 0�25 ÿ0�0488 1�39208
s=z-transformation, a� 0�5 ÿ0�0167 0�87775
s=z-transformation, a� 1 0�0070 0�00179
Mixed layer transformation, d� 0�5 ÿ0�0488 1�23785
Mixed layer transformation, d� 2 ÿ0�0194 0�83847
Mixed layer transformation, d� 5 0�0090 0�10953
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isopycnal reference solution. This could be caused by energy losses due to a small numerical

diffusion still present in the density advection scheme.

The interface position and the velocity pro®le are far away from the reference solution for s-co-

ordinates. This is due to the violation of the hydrostatic consistency condition (64). However, even in

cases where this condition is not violated, i.e. for the mixed layer transformation with d� 2 and the

z=s-transformation with a� 0�5, the resulting velocity pro®les are disturbed.

The coarse bottom resolution for the mixed layer transformation with d� 5 and the steps at the

bottom for the z=s-transformation obviously do not lead to large errors. This might be due to the fact

that the ¯ow velocities are fairly small and also due to the use of the pro®le-conserving horizontal

advection of momentum.

Figure 7. Two-layered ¯ow over bumpÐinterface position and velocity pro®le at x� 2�4 km after t� 12 h: comparison between
isopycnal transformation, z=s-transformation for different a and s-transformation

Figure 8. Two-layered ¯ow over bumpÐinterface position and velocity pro®le at x� 2�4 km after t� 12 h: comparison between
isopycnal transformation, mixed layer transformation for different d and s-transformation
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8. CONCLUSIONS

The barotropic experiments carried out in this paper showed that the discretization of horizontal

advection has to be treated carefully in marine models with general vertical co-ordinates. Using the

pro®le-conserving scheme rather than a momentum-conserving scheme signi®cantly improved the

performance of non-s-co-ordinate models. This could be advantageous, especially in z-co-ordinate

models, for coastal and estuarine applications where near-bottom advection plays an important role.

However, in large-scale applications where momentum and potential vorticity conservation play a

much more important role than near-bottom advection, the momentum-conserving advection

probably gives better results that this new advection method.

It is shown with the two-layered ¯ow experiment that the two-term formulation of the horizontal

buoyancy gradient in general vertical co-ordinate models is problematic. In the case of moderately

sloping isopycnals these two terms nearly cancel out analytically. After the discretization the error of

the difference of these terms can be large, despite the fact that both terms have only relatively small

truncation errors. It is shown that these errors can also be signi®cant if the hydrostatic consistency

condition is not violated. This problem does not occur in cases where one of the two terms is

negligible. This is the reason why the results for the isopycnal co-ordinates on one hand and the z=s-

model with a � 1 and the missed layer transformation with d � 5 on the other hand were so similar.

It can be concluded here that general co-ordinate models with an arbitrary layer distribution in the

vertical can be advantageous compared with pure s- or z-co-ordinate models. Once such a model is

constructed, individual layer distribution rules can be de®ned which ®t the vertical co-ordinate to the

speci®c problem under consideration. This can include co-ordinate transformations that are much

more sophisticated than those discussed in this paper.
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